

NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

Approved for public release; distribution is unlimited

HOW INTRUSION DETECTION CAN IMPROVE SOFTWARE
DECOY APPLICATIONS

by

Valter Monteiro, Junior

March 2003

 Thesis Advisor: Neil C. Rowe

THIS PAGE INTENTIONALLY LEFT BLANK

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No.
0704-0188

Public reporting burden for this collection of information is estimated to average 1
hour per response, including the time for reviewing instruction, searching existing
data sources, gathering and maintaining the data needed, and completing and reviewing
the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing
this burden, to Washington headquarters Services, Directorate for Information
Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-
4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-
0188) Washington DC 20503.
1. AGENCY USE ONLY
(Leave blank)

2. REPORT DATE
March 2003

3. REPORT TYPE AND DATES
COVERED

Master’s Thesis
4. TITLE AND SUBTITLE How Intrusion Detection Can
Improve Software Decoy Applications

5. FUNDING NUMBERS

6. AUTHOR (S) Valter Monteiro, Junior
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND
ADDRESS(ES)

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author
and do not reflect the official policy or position of the U.S. Department of Defense
or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION
CODE

13. ABSTRACT (maximum 200 words)
This research concerns information security and computer-network defense. It

addresses how to handle the information of log files and intrusion-detection systems
to recognize when a system is under attack. But the goal is not the usual one of
denying access to the attacker but providing a justification for deceptive actions to
fool the attacker. We implemented a simple demonstration of how two different kinds
of open-source intrusion-detection systems can efficiently pool data for this purpose.

14. SUBJECT TERMS
Intelligent Software Decoy, Intrusion Detection, Computer Deception,
Response Mechanism, Log File Monitor

15. NUMBER OF
PAGES

85
 16. PRICE CODE
17. SECURITY
CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

HOW INTRUSION DETECTION CAN IMPROVE SOFTWARE DECOY
CAPABILITIES

Valter Monteiro, Junior
Lieutenant Commander, Brazilian Navy

Electronic Engineering (B.S.), Universidade de Sao Paulo,
1994

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
March 2003

Author: Valter Monteiro, Junior

Approved by: Neil C. Rowe

Thesis Advisor

J.D. Fulp
Second Reader

Peter J. Denning
Chairman, Department of Computer
Science

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

This research concerns information security and

computer-network defense. It addresses how to handle the

information of log files and intrusion-detection systems to

recognize when a system is under attack. But the goal is

not the usual one of denying access to the attacker but

providing a justification for deceptive actions to fool the

attacker. We implemented a simple demonstration of how two

different kinds of open-source intrusion-detection systems

can efficiently pool data for this purpose.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION.. 1

II. BACKGROUND AND DEFINITIONS 5

A. SOFTWARE DECOYS 5

B. LOG FILES.. 7

C. PERL SCRIPT – THE LOG MONITOR 9

D. INTRUSION-DETECTION SYSTEMS 11

E. LIDS (LINUX INTRUSION-DETECTION SYSTEM).......... 15

F. SNORT – A NETWORK INTRUSION-DETECTION SYSTEM 16

G. RESPONSE MECHANISMS OR COUNTERMEASURES........... 18

III. IDS AND SOFTWARE DECOY ARCHITECTURE................... 21

A. INTRUSION-DETECTION INTEGRATION.................. 21

B. IDS AND SOFTWARE DECOY ARCHITECTURE INTEGRATION .. 22

1. How NIDS Can Improve a Software Decoy 22

2. How HIDS Can Improve Software Decoy 23

3. Data Reduction 24

IV. EXPERIMENTAL DESIGN IMPLEMENTATION 27

A. EXPERIMENTS..................................... 28

1. PING....................................... 29

2. Scan....................................... 30

3. Connect 33

4. Other Suspicious Actions at Target Machine .. 35

V. DISCUSSION... 41

VI. CONCLUSIONS.. 43

A. POSSIBLE FUTURE WORK 44

VII. APPENDIXES... 45

APPENDIX A – LOG MONITOR PROGRAM 45

 viii

APPENDIX B – LIDS AND INSTALLATION 47

1. System Environment 47

2. Installation 47

3. LIDS Files Configurations................... 48

APPENDIX C – SNORT FILE CONFIGURATION................. 55

LIST OF REFERENCES.. 65

INITIAL DISTRIBUTION LIST 69

 ix

LIST OF FIGURES

Figure 1. Log File Monitor Red Hat 8.0 9

Figure 2. Snort principle of function 17

Figure 3. Architecture schema 22

Figure 4. Inner layers of defense-in-depth................. 24

Figure 5. Win?Map application scanning the target machine .. 31

Figure 6. SSH connection from attacker machine............. 33

Figure 7. Attacker login 33

Figure 8. Process running at protected machine............. 36

Figure 9. Attacker deleting and copying files.............. 37

Figure 10.Attacker trying to kill httpd process 38

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF TABLES

Table 1. Data Collection Mechanisms 13

Table 2. HIDS and NIDS Comparison 14

Table 3. Experimental Design Module Implementation 27

Table 4. Experiment Security Policy 29

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

ACKNOWLEDGEMENTS

This thesis contains many others’ contributions.

These include those of the professors and students who

worked on the software decoy project, and the group of

specialized professors and students whose combined efforts

developed this topic. I extend my thanks to these

individuals for their support during the last 6 months.

I would especially like to thank Dr. Neil Rowe for all

the support, patience and direction that he gave me. He

consistently guided me in the right direction and found

usefulness in all my work.

I also want to thank Prof. Geoffrey Xie, Prof J.D.

Fulp and CDR Nuccio Zuquello. Without Prof. Xie’s

friendliness, support and his lab and direct study

orientation, this thesis would have been impossible. Prof.

J.D. Fulp’s friendship, advice and instruction in teaching

in the classroom were instrumental in my learning.

Finally, thanks to CDR Nuccio Zuquello, my Brazilian

advisor, who sent small e-mails with the right words at the

right moment.

Collectively, I also want to thank all of the

professors of CISR for teaching me the concepts of good

security and all that I know about computer security.

This work is dedicated to my parents who gave me life

and the opportunity of education; to my wife, Suzana, for

her outstanding support and her extraordinary sense to see

the good side of everything; to Stephanno, my oldest son

 xiv

and best friend, for always encouraging me to spend time

with him even for just a while; and finally to Guiga, my

special youngest son, who has taught me the real logic of

life by simply asking me every day, “Papai happy”? I will

always work hard to keep these three special people happy.

 1

I. INTRODUCTION

In the "information age" the world became a more

interconnected place. Critical infrastructure, business

operations, bank operations, military operations, and

communication systems are totally dependent on computer

systems that control almost all aspects of life. The

global network includes faxes, cellular phones, satellites,

and more than 650 million people connected to the Internet.

With this scenario, every year the larger software

corporations in the world, such as Microsoft, SUN, Oracle,

and Linux Distributors, release a new version of their

operating systems (OS), service packs, databases, and

desktop and server applications for all of those platforms.

Usually security is not the main goal of all of these

programs and, even if it were, checking the integrity of

all these millions of lines of code is impossible.

Added to this is the number of easily available

"hacker" web sites on the Internet providing tools to

exploit this ocean of vulnerabilities. A factor urging a

change in the approach to defending networks is that hacker

tools are becoming more automatic and no longer require

deep knowledge to use them. Only a few minutes of exposure

could create millions of dollars of losses due to sensitive

information becoming accessible by the enemy.

Michael and Riehle suggested in [1] a different

defending information systems approach: "Intelligent

Software Decoys." This approach borrows ideas from military

 2

strategy. Instead of blocking or fighting attackers as

soon as they are detected, a decoy system tries to keep

them occupied by making them believe that the assault is

successful and progressing as expected. To do this, we

must decide how to detect the intrusion, how to respond to

this attack, and how to implement decoy capabilities.

Implementing a complete decoy system is out of the

scope of this research. Therefore, the experimental design

that we developed is only a proof of concept. It shows how

to coordinate an intrusion-detection system with software

decoys and how to improve the performance of software decoy

application with an intrusion-detection system. Our

research is based on familiar defense concepts like

defense-in-depth, intrusion-detection architecture, secure

log files, data reduction, the principle of least

privilege, and reference monitor. In Chapter II we will

define these concepts.

Chapter III will propose a design that is capable of

integrating messages read from log files, alerts read from

the intrusion-detection alert file, and messages read from

all devices installed to protect our system. It borrows

some principles from real war strategies, including

integration of a diversity of resources to provide more

flexibility.

Chapters IV, V and VI will show the experimental

design architecture, the data collected from this

experimentation and the analysis of the gathered

information. As we built the design based on open-source

applications, we developed installation guidelines, which

 3

are included in the appendices, answering one of the most

important objections to open-source: the lack of good

documentation.

 4

THIS PAGE INTENTIONALLY LEFT BLANK

 5

II. BACKGROUND AND DEFINITIONS

A. SOFTWARE DECOYS

Since in ancient times Sun Tzu [2] wrote that “all

warfare is based on deception”, deception has a very

important role in warfare. Dunnigan started his book [3]

saying, “The most potent weapon in any soldier’s arsenal is

deception.” Deception is an art supported by technology

that, when successful, can have a devastating impact on

victims. Cohen [4] suggests two way of defeating an enemy

in attacks on computers ("information warfare"): have an

overwhelming force of some sort (be faster, smarter, better

prepared, better supplied, first to strike, better

positioned, and so forth), or manipulate the enemy into

reduced effectiveness by inducing misperceptions that cause

the enemy to misuse their capabilities (i.e., use

deception).

In conventional war, the nine main deception types

defined by Dunnigan are: concealment, camouflage, ruses,

demonstrations, feints, false and planted information,

lies, displays and insight. From this list, Neil Rowe [5]

explained that only the last 3, lies, displays and insight,

are potential defensive tactics for cyberspace.

Appropriate deceptive tactics depend on the value of the

resources being protected and the danger of the attack [6].

However, the general idea is to limit or confine attacks

that get through the first line of defense rather than stop

them. Deception differs from honeypots [7] by providing

defense not data.

 6

Deception could be one more layer in our defense-in-

depth, thus confusing an attack plan for a while. Clearly,

in the nanosecond computer world, minutes can be a long

period of time. Delays give time to win race conditions

against the attacker’s automatic tools, permitting the

analysis of the attack and a plan to respond.

 Before responding to an attacker or outsmarting them,

the system must detect the attacker. Thus deception

capabilities must be integrated in the defense operations.

This would start with a monitoring system, which is

described in the next item.

Thinking about the relationship between time and

defense, Winn Schwartau in [8] suggested a formula (P > D +

R) for a security model. He says that if the time value

afforded a system by protection (P) is greater than the

amount of time it takes to detect (D) and respond (R) to an

attack then a secure environment is evident. A system with

deception (C) suggests a new formula: P + C > D + R. This

gives us a quantitative justification for deception.

Intelligent software decoys [9], has both a protection

and counterintelligence component. The decoy consists of

one or more software wrappers placed around a unit of
software (e.g., component or method), with each wrapper

consisting of a set of rules for detecting and responding

to suspicious behavior. Instead of indicating to the

attacker that he has been detected, the decoy keeps the

attacker occupied by creating the illusion for the attacker

that the attack is progressing as expected, using

techniques ranging from fake error messages to redirecting

 7

the interaction with the attacking computer process to a

virtual sandbox.

The goal is threefold: to gather information about the

nature of the attack, adjust the system’s defenses based on

the intelligence information, and cause the attacker to
experience an opportunity cost (e.g., waste attack

resources that could have been better applied, or expose

sources and methods).

B. LOG FILES

Log files and intrusion-detection systems provide our

monitoring mechanisms for a computer operating system. Log

files are defined as files that contain messages about the

system, including the kernel, services, and applications

running on it [10]. Today all operating systems,

applications, and network devices have the capability to

log information and events that occurred in their

environment. Thomas A. Wall wrote in [11] that the better

the log stream, the pattern library, and the analysis

tools, the better the overall security. He also defines

two goals of a monitoring system: reducing the likelihood

of an attack going unlogged to as close to zero as is

affordable, and increasing the likelihood that the events

logged for an attack will be recognized as an attack to as

close to 100 percent as is affordable. He also discusses

the shape of a logging system, the areas to be logged, the

logging mechanisms, the logging system design, log

management, and log analysis.

 8

In an ideal network, the system log records every

event. This approach is technically very difficult, as few

systems have the resources to store all this information.

Another difficulty is the human incapacity to check

thousands of lines of information of many log files to

figure out what is happening. Therefore the log system is

configured to reduce this ocean of information by recording

only events necessary to detect known common attack

patterns, events necessary to detect unusual patterns of

access, and information about the continued trustworthiness

of the logging system.

Different log files keep different information. For

example, there is a default system log file, a log file for

security messages, and a log file for kernel events. Some

log files are controlled by a daemon called syslogd. In

our experimental design based on the Linux platform we will
use syslog. A list of log messages maintained by syslogd

can be found in the /etc/syslog.conf configuration file.

Syslog is the primary logging mechanism for most Internet-

related equipment and the most common network logging

mechanism in the TCP/IP world. Syslog runs on all

Unix/LINUX systems, and on many other operating systems,

including Windows platforms that have adaptors.

The log files that we used in our experiments are in

the /var/log directory. Most log files are in plain text

format. In our experiments, we will use a Perl script to

read this text and do data reduction. In addition we can
use any text editor or logviewer to inspect the information

as shown in Figure 1 [10].

 9

Figure 1. Log File Monitor Red Hat 8.0

C. PERL SCRIPT – THE LOG MONITOR

A log monitor is a process, or daemon, which monitors

log messages produced by the computer system and programs

running on it [12]. A properly designed log monitor can

recognize unusual activity (or inactivity), alert

administrators to problems, gather statistics about system

activity, or as in our research, act as the main source for

the system to take automatic action against a threat.

A log monitor is an agent, which responds

automatically to conditions revealed by one or more system

log messages. The response may consist of autonomous

actions to handle a situation and/or notification of a

 10

human administrator. A stateful log monitor is one that

infers the presence of a condition requiring attention by

compiling data from more than one log message. Our

experiments used a stateful log monitor implemented by a

Perl script.

Log monitoring requires string manipulation, and Perl

has features that make it one of the most powerful

languages for string manipulation. Lutz Prechelt [13]

tested 80 implementations of the same set of requirements

and compared some properties, such as run time, memory

consumption, source text length, and the amount of effort

required to write them. The results indicate that for the

given programming problem, which regards string

manipulation and searches, a “script language” such as Perl

is more productive than “conventional languages” such as C,

C++ and Java. In terms of run time and memory consumption,

“script languages” often turned out better than Java and

not much worse than C and C++.

For future implementations of deception capabilities,

Perl is also flexible in implementing rules, reading

configuration files, reading streams from networks,

implementing servers and sockets and manipulating a

system’s call. Others Perl advantages include:

• Provides features necessary for large projects

like modularization and object-oriented techniques.

• Provides great flexibility for manipulation of

strings using regular expressions.

 11

• Allows the use of all system calls including

those necessary for network tasks.

• Provides a way to dynamically load a module

including code written in C.

D. INTRUSION-DETECTION SYSTEMS

Intrusion-detection systems (IDSs) are important

software tools. [14] and [15] provide some background.

Some useful definitions:

• Intrusion: Any set of actions that attempt to

compromise the integrity, confidentiality, or

availability of a computer resource [14].

• Intrusion detection: The problem of identifying

actions that attempt to compromise the integrity,

confidentiality, or availability of a computer

resource [14].

• Monitored system or system: Program, application,

host or a network of computer resources that is being

monitored [14].

• Intrusion-detection systems: Systems that collect

information from a variety of system and network

sources and, then, analyze the information for signs

of intrusion (attacks coming from outside the

organization) and misuse (attacks originating inside

the organization) [16].

 12

Crosbie and Spafford in [17] identified desirable

characteristics of an intrusion-detection system:

• It must run continually with no human

supervision.

• It must be fault tolerant.

• It must resist subversion and monitor itself.

• It must impose a minimal overhead on the systems

where it runs.

• It must be as “quiet” as possible, precluding

professional attackers from realizing that they are

being monitored.

• It must be configurable and expectantly adaptable

to changes in the system and to user behavior over

time.

• It must be able to detect unknown attacks as much

as possible without generating a lot of false positive

and false negative.

• It must be able to avoid the situation of being

used as a denial of service mechanism.

• It must report and launch automated decoy

capabilities as soon as possible after an intrusion or

an attack detection.

 13

Intrusion-detection systems can be classified by their

data collection mechanisms. We can classify IDSs as direct

or indirect [14]. Indirect IDSs could be sub-classified

into network-based or host-based with direct data

collection mechanisms being sub-classified into internal or

external. Table 1 clarifies these definitions.

Data Collection Mechanisms
Direct Indirect

Host-based Host-based Network-based
Internal External

Table 1. Data Collection Mechanisms

Internal IDSs are those whose code is incorporated in

the monitored system. We will use both, internal and

external, in our experimental design.

Indirect monitoring is the observation of a component

through a separate mechanism or tool. Direct monitoring is

better than indirect for many reasons [14]. An intruder

could potentially alter data from an indirect data source

before the log monitor uses it, or it could be affected by

non-malicious failures. But the majority of IDSs use some

form of indirect monitoring. In our experimental design we

will use both direct and indirect.

Network-based IDSs (NIDSs) is the acquisition of data

from the network, usually done by capturing packets as they

flow through it. Host-based IDSs (HIDSs) process data that

originates in computers such as event log files. Network-

based IDSs capture and analyze TCP/IP packets, and host-

based IDSs process event logs from operating systems,

kernels and applications. In our experimental design, we

 14

will use both a NIDS and an HIDS. Table 2 [15] summarizes

the advantages of NIDSs and HIDSs.

 Network-based IDS Host-based IDS

A
D
V
A
N
T
A
G
E
S

• Can watch the whole
network or any subsets
of the network from one
location.

• Can monitor and detect
network attacks (e.g.,
probes, scans, malicious
and anomalous activity
across the whole
network.

• Can become “invisible”
for access.

• Can prevent and log abuse of
privilege attacks.

• Can detect elevated privileges
attacks.

• Can detect for critical data
access and modification.

D
I
S
A
D
V
A
N
T
A
G
E
S

• Can not detect host
activity.

• Can not scan protocols
or content if network
traffic is encrypted.

• Can cause monitoring and
detecting to become more
difficult on modern
switched network.

• Can lose some packet
when working in high-
speed network.

• Can not trace network activity.
• Can only work on specific

platform.
• Can interfere with implemented

service activities running in
the host.

• Can not totally trust the host
information, once the machine
is compromised.

Table 2. HIDS and NIDS Comparison

An increasing number of hybrid IDSs use both HIDS and

NIDS components to augment the information collected and to

better analyze it. Such hybrids are better able to provide

tamper-proof operation. If an attacker tries to use the

network to launch the attack, they would be monitored; if

they launched an attack from the machine, they would also

be monitored.

 15

E. LIDS (LINUX INTRUSION-DETECTION SYSTEM)

In our experiments we used LIDS [18] as our HIDS.

LIDS provides protection to file and running processes and

uses a security kernel. Additionally, LIDS has a built-in

portscan detector, which can be used to alert users to the

warning signs of a possible intruder, and can send e-mail

to the network administrator when a rule is broken. These

features could be considered response mechanisms and could

be used to launch decoy capabilities.

Besides this, the most important feature of LIDS is

its implementation of the reference monitor concept. A

reference monitor [19] is an abstraction that allows active

entities called subjects to make reference to passive

entities called objects, based on a set of current access

authorizations. Subjects are processes executing in a

particular domain in a computer system. A domain of a

process is defined as the set of objects which the process

currently has the right to access according to each access

mode.

As described in [20], a security kernel is the only

method proven to be effective at countering the threats of

penetration and subversion of mechanism; therefore it is

the only effective method of preventing illicit access to

information under protection. A security kernel is defined

as the hardware and software that implements a reference

monitor. Files, records, and other types of information

repositories can be built from primitive objects (read and

write), but access control is provided by the reference

monitor on the basis of these primitive objects over which

 16

it has total control. With regard to information warfare

in particular, every security feature must itself be

protected so that they can detect and respond. This

requires a kernel.

Previous work of our project implemented a deceptive

component [21] with security based on kernel modules. LIDS

works in the same way by improving Linux security at kernel

level. The main advantage of this solution over NAI

Wrappers [22] is that LIDS is more comprehensive in its

kernel capabilities. In LIDS, the "root" (system

administrator) is no longer all-powerful. Some files,

directories, and processes protected by LIDS cannot be

modified even with the root password. The advantage is

that even if a vulnerability were found in a program that

is running with root privilege, the damage of its

exploitation would be limited.

F. SNORT – A NETWORK INTRUSION-DETECTION SYSTEM

Snort is an open-source free NIDS developed by Martin

Roesch [23]. In early 2002, Snort was downloaded over

10,000 times a week to protect government, corporate, home,

and education sites. Snort is small at 1.8 Mbytes in the

last version (1.9), and extremely configurable, allowing

users to create their own rules or even reconfigure its

base functionality though its plug-in interface. The

schema in Figure 2 shows how Snort works [24].

 17

P
ac

ke
t

S
tr

e
am

SNORT

Sniffing Packet Decoder

Preprocessor
(Plug-ins)

Detection Engine
(Plug-ins)

Output Stage
(Plug-ins)

D
at

a
 F

lo
w

Alerts / Logs

Figure 2. Snort principle of function

Figure 2 shows how the packet is sniffed off the

network interface and passed to the packet decoder where it

is partitioned into its layers. If any preprocessors have

been defined, they act upon the packet. Preprocessors

allow Snort to examine and manipulate network traffic data

in several useful ways, such as in IP defragmentation, TCP

stream assembly, portscan detection, and web-traffic

normalization. The preprocessor can maintain state over

multiple packets to be more intelligent in its processing.

Then the packets are passed to the detection engine where

rules examine the processed packet. Snort's official

documentation [25] gives details of rule capabilities. If

an alert or logging is triggered by the rules, the packet

is passed to the output preprocessor for appropriate

processing.

There are three basic modes of operation in Snort:

sniffer, packet logger, and NIDS. Each is well suited for

 18

a particular traffic analysis task. In our experimental

design we used Snort in network mode, where it was loaded

with a configuration file (snort.conf) containing run-time

directives and rules. Also, a Snort packet can be either

binary or plain text. For speed and portability, it is

best to log to a binary-format file, although we used plain

text in our experiments.

G. RESPONSE MECHANISMS OR COUNTERMEASURES

The concept of active response mechanisms or

countermeasures in an IDS [26] is a form of the idea of

having the IDS capable of automatic reactions to threats.

The goal is to prevent further compromise between the

attacker and the attacked machine. The following

techniques can be used:

• RST emission

• Firewall update

• Routing table update

• Signature-based firewall

An IDS has two parts, data collection and attack

response. Data collection is done by sensors that are

usually self-contained detection engines, which obtain

network packets, search for patterns of misuse, and then

report alarms to a data-analysis central command. This

approach does have some problems, however, such as

difficulty in recognizing denial of service attacks and the

 19

creation of race conditions between a packet generated by

IDS and the packets send by an attacker [27].

Automated response to intrusions has become a major

issue in defending critical systems. Since the adversary

acts at computer speeds, systems need the capability to

react without human intervention. An infrastructure that

supports the development of automated response must allow

easy integration of detection and response components to

enable experimentation with automated response strategies.

 20

THIS PAGE INTENTIONALLY LEFT BLANK

 21

III. IDS AND SOFTWARE DECOY ARCHITECTURE

A goal of our research is to show that the integration

of a NIDS and a HIDS could facilitate deployment of a

software decoy. But when we started our research we were

not sure how modular NIDSs and HIDSs could be, which is a

necessity when integrating them with additional complex

modules for deception. We discovered one simple interface

that allowed for considerable modularity was to process log

files created by the NIDS and HIDS, and make this the input

to the deception processing.

A. INTRUSION-DETECTION INTEGRATION

The experimental design contains two types of

intrusion detection, NIDS (Snort) and HIDS (LIDS). Another

module is a log monitor that collects information from

NIDS, HIDS, and the kernel log file, and then does data

reduction. Figure 3 illustrates this. As discussed in

Chapter II, good IDSs should provide internal direct data

collection mechanisms such as those provided by a HIDS.

Nonetheless, a NIDS with its indirect collection is

valuable as it can anticipate the attack and the reaction.

Most attacks start with a probe and scanning and, as seen

in Table 2, these can only be caught by a NIDS.

Furthermore, NIDS can see malicious network behavior in a

variety of forms that a HIDS cannot see. A HIDS can see a

portscan, but a NIDS can see the similar attacks on other

sites that happened first.

 22

SNORT LIDS

NIDS AlarmsLog Files HIDS Alarms

DATA
REDUCTION

Log Systems

Log Monitor

Figure 3. Architecture schema

B. IDS AND SOFTWARE DECOY ARCHITECTURE INTEGRATION

1. How NIDS Can Improve a Software Decoy

Georgios Fragkos [21] selected an exemplar of attack

and created a deception for it by using NAI’s Generic

Software Wrapper Toolkit [22] to do both detection and

decoying. But his deception ends when the attacker tries

to interact with the shell since the shell's functionality

is not being simulated and the attacker will immediately

discover that something went wrong. Since it is thought

 23

that professional attacks always will use automatic tools

as rootkits, this kind of decoy may only be effective for a

few seconds. An alternative could be to transfer the

attacker to a safer machine where everything is simulated,

such as a honeypot or sandbox, where it would be hard for

the attacker to tell that he is being fooled.

NIDS can anticipate the attack, thus improving the

performance of the software decoy application. For

instance, after NIDS detects a ping it could lie to the

attacker and send an ICMP (Internet Control Message

Protocol) message saying “host unreachable”, or the

software decoy could delay the ping response. Or NIDS

could incorrectly inform the attacker as to which ports are

open and what vulnerabilities they have.

2. How HIDS Can Improve Software Decoy

After the attacker has gained some privileges on the

target machine, data collected from the logs would decrease

in importance because the network information could no

longer be trusted. The attacker could also launch some

cryptographic channels to communicate with the outside

world, making the network analysis more difficult. The

system developed in our experiments tried to deal with this

situation by creating one more layer of defense and one

more chance to fool the attacker, the layer above the root

discussed in Chapter II (see Figure 4).

 24

Root and unprotected world

LIDS protection for software decoy, log files and all important
files - Reference Monitor enforcement

Response Decoy Layer

Seal the kernel

Kernel and
process to be

protected

Figure 4. Inner layers of defense-in-depth

As seen in Figure 4 above, the root is no logger the

last level to be attacked to reach the control of the host.

Even if the attacker gains root privileges, we keep the

kernel sealed, the process and services untouchable, and

the decoy programs running. This design minimizes the

threat to the target system and provides more time for

launching decoy capabilities against the enemy, which

increases the deception factor in Schwartau formula [8].

3. Data Reduction

Few systems have the resources to store all

information generated by various log files. In a medium

network the hard disk could be filled by log file

information in a few weeks. If the log systems are

concentrated in one machine or file, this situation is much

worse. Not concentrating all information in one system or

file is not reasonable either, as this situation

exacerbates the human incapacity to check thousands of

 25

lines of information of many log files to figure out what

is happening. To make a realistic analysis of the

information collected by some log files, the system

administrator would have to check each line of each log

files, comparing timestamps of the events generated by the

all log files or alert files.

Therefore, the best solution is implementation of a

log monitor to reduce this ocean of information by, based

on a security policy, recording only those events necessary

to detect attack patterns and events that are suspicious.

The other advantage is that the log monitor works as an

interface between the detection and the response. To do

this work we used Perl as best explained in Section II-c.

 26

THIS PAGE INTENTIONALLY LEFT BLANK

 27

IV. EXPERIMENTAL DESIGN IMPLEMENTATION

We now describe in more detail an implementation of

intrusion-detection systems to support software decoys.

The next sections will more thoroughly describe the

implementation of each module in Table 3.

Modules
Type Description

Defense (a) SNORT as NIDS
(b) LIDS as HIDS
(c) Kernel Log File

Log Monitor (d) Perl script
Decoy

Mechanisms
(e) Network decoy
(f) Host decoy

Table 3. Experimental Design Module Implementation

The modules were implemented for a Linux Red Hat8.0

platform. This platform was chosen because the source code

is available, which facilitates instrumentation of the

kernel. This feature is very important for the

implementation of LIDS (HIDS) as it works as a patch of a

“pure” Linux kernel, mandatory in the recompilation of the

kernel. Another advantage is that the kernel

instrumentation capacity can facilitate future work as the

software decoy implementation can also be embedded in the

operating system kernel.

 28

A. EXPERIMENTS

As a proof of concept, we tested both a network-based

attack and a host-based attack in experiments. Figure 3

shows what was implemented. We installed two services in a

protected host: a Web service (Apache2.0) and a SSH

service. The SSH server is part of Red Hat 8.0. In the

installation of both services the default configuration was

used. The simulated attacks tried to break into the

protected host to exploit vulnerabilities of a Web and SSH

service.

Most attacks are initiated with footprinting, followed

by probes and scans. These first steps have the main goal

of discovering open ports and known vulnerabilities thus

finding the best way to break into the target host [32].

In the first part of an attack the invader bases his action

on the network environment, so NIDS could better monitor

the invader's actions. In the second part of the attack,

after the invader had obtained some privileges, the kernel

Log Files and HIDS alerts become essential for attack

detection and analysis.

As described in earlier sections, the Perl script

(Appendix A) reads the alert file generated by Snort, reads

the log file generated by Linux kernel and reads the log

file generated by LIDS, writing in a file called decoy.log

information about the security policy (Table 4), timestamp

and IP address. This experiment had the rules shown in

Table 4 for its security policy.

 29

Attacker Detection by Ploy Defense Decoy System Reaction

PING NIDS HONESTY (a) Log monitor records the action to
a data reduction file;

(b) Starts a program to simulate false
ports;

(c) Delays the response.
SCAN NIDS and HIDS LYING (d) Log monitor records the action to

a data reduction file;
(e) Responds with false ports as open;
(f) Changes the configuration of the

border Cisco router, redirecting
the attacker to a fake server.

CONNECT
(LOGIN)

NIDS and
Kernel Log
File

LYING (g) Log monitor records the action to
a data reduction file;

(h) Launches fake xterm.
BAD

ACTIONS
HIDS LYING (i) Log monitor records the action to

a data reduction file;
(j) Reports login.

Table 4. Experiment Security Policy

1. PING

Following Table 4, we prepared our environment to

detect any kind of "ping" (attempt to query the status of

our protected machine). From an attacker machine

(192.168.0.1), we started to ping the protected host

(192.168.0.3).

• Snort: We wrote a rule to detect any ICMP (Internet

Control Message Protocol) packet that has a

destination of the protected host:

Alert icmp $EXTERNAL_NET any -> $HOME_NET any (msg:”ICMP
Packet to Protected Host”; classtype:bad-unknown;)

To do this, in the snort.conf (see Appendix C) we

defined $EXTERNAL_NET as any IP number but the

protected host was assigned IP number 192.168.0.3.

 30

The $HOME_NET is the protected host [25]. This rule

generated the following message at the alert file at

/var/log/snort directory for each ping:
02/23-15:16:33.464600 [**] [1:0:0] ICMP Packet [**]
[Classification: Potentially Bad Traffic] [Priority: 2] {ICMP}
192.168.0.1 -> 192.168.0.3

• LIDS: Not involved.

• Kernel Log File: Not involved.

• Log Monitor: Read the alert file, searching for a

/PING/ pattern. After matching the PING string at

alert file, the Log monitor recorded in decoy.log:
HONESTY: hacker(192.168.0.1) PING DEST:192.168.0.3 at 02/23
15:16:33.464600 2003.

2. Scan

Using Win?Map, a well-known scanner, from 192.168.0.1

(the attacker machine), we scanned the target protected

host (192.168.0.3) (see Figure 5).

 31

Figure 5. Win?Map application scanning the
target machine

• Snort: The scan is logged by the Snort portscan

preprocessor [30]. It records an alert in the

scan.log file and in the alert log file, both in the
/var/log/snort directory. Stream4, another

preprocessor, also logged this activity in the
/var/log/snort/alert file. This is the output of that

file.

02/24-11:27:29.905403 [**] [117:1:1] (spp_portscan2) Portscan
detected from 192.168.0.1: 1 targets 21 ports in 0 seconds [**]
{TCP} 192.168.0.1:60517 -> 192.168.0.3:506

02/24-11:27:31.586498 [**] [111:9:1] (spp_stream4) STEALTH
ACTIVITY (NULL scan) detection [**] {TCP} 192.168.0.1:60525 ->
192.168.0.3:80

The portscan preprocessor is a powerful and flexible

scan detector. It checks for TCP connection attempts to

more then P ports in T seconds, and UDP packets sent to

more than P ports in T seconds [25], where P and T are

 32

given in the snort.conf file. This portscan can also

detect a single “stealth scan” packet as in NUL, FIN,

SYNFIN, and XMAS scans. Another benefit of portscan is

that alerts only showed once per scan, rather than once per

packet, which reduces the amount of redundant information

in the alert file.

The stream4 preprocessor provides TCP stream

reassembly and stateful analysis capabilities for Snort.

Stream4 also gives users the ability to track more than 256

simultaneous TCP streams. Stream4 should be able to scale

to handle 32,768 simultaneous TCP connections in its

default configuration.

• LIDS: LIDS can also detect port scans when its

optional port scan detector is enabled. Here is an

example from its message log file.
Feb 24 11:19:39 LIDS kernel: LIDS: (undetermined program) pid 0
ppid 0 uid/gid (0/0) on (null tty): Port scan detected:
192.168.0.1 scanned 1153 closed ports including 575 ports < 1024)

• Kernel Log File: Not involved.

• Log Monitor: Read the alert file generated by

Snort, searching for /spp_portscan2/ or /spp_stream4/

patterns. After matching one of these patterns at
alert file, the log monitor recorded in the decoy.log

file:

The Log monitor also read the kernel message log file

generated by LIDS and generated the following record in
decoy.log file:

LYING: hacker(192.168.0.1) SCAN DEST:192.168.0.3 at 02/24-
11:27:29.905403 2003.

 33

3. Connect

In our scenario, see Table 4, after a ping and a scan

the attacker tries using the PuTTY application (Figure 6)

to connect to the target machine at port 22 (ssh).

Figure 6. SSH connection from attacker
machine

After that, for experimental purposes only, the

attacker logs in as root (Figure 7), simulating that the

root password was previously known.

Figure 7. Attacker login

LYING: hacker(192.168.0.1) SCAN DEST:192.168.0.3 at Feb 24
11:19:39 2003.

 34

• Snort: Snort was configured to detect any attempt

to telnet or to connect using the protocol SSH against

the protected host. These are the rules:
alert tcp $EXTERNAL_NET any -> $TELNET_SERVERS 23 (msg:"TELNET
attempt"; flow:to_server,established; classtype:shellcode-detect;
sid:1430; rev:5;)

alert tcp $EXTERNAL_NET any -> $SSH_SERVERS 22 (msg:"SSH
attempt"; flags:S+; classtype:suspicious-login; sid:1431; rev:5;)

These rule configurations use the variable

$EXTERNAL_NET defined in snort.conf as being any host but

the protected host (192.168.0.3). Both TELNET_SERVER and

SSH_SERVER are defined as being the protected target host,

192.168.0.3.

Due to the encrypted nature of a SSH connection,

detecting such an attacker's attempt to scale privileges is

impossible. But we can detect whether encrypted traffic

was employed to communicate with the protected host. The

following message was logged in the alert file at
/var/log/snort directory:

02/24-22:47:10.107040 [**] [1:1431:5] SSH attempt [**]
[Classification: An attempted login using a suspicious username
was detected] [Priority: 2] {TCP} 192.168.0.1:1884 ->
192.168.0.3:22

• LIDS: As a SSH is a service available by the

protected server, LIDS is not involved.

• Kernel Log File: A message to record the SSH

connection was recorded in the kernel log file:
Feb 24 21:23:01 LIDS sshd(pam_unix)[684]: session opened for user
root by (uid=0)

 35

This is misleading because we called the target

machine LIDS. The log message above was recorded by the

kernel and not by the HIDS called LIDS.

• Log Monitor: Read the alert file, searching for

an attempt to CONNECT record. After matching the SSH

connection recorded by Snort, the log monitor was
recorded in decoy.log file:
LYING: hacker(192.168.0.1) CONNECT SSH DEST:192.168.0.3 at Sat
Feb 21 15:16:33 2003.

The log monitor also read the kernel message log file

generated by the kernel log and generated the following
record in decoy.log file:

4. Other Suspicious Actions at Target Machine

Using the PuTTY application, we logged on to the

target machine and tried to execute some forbidden actions

such as copying files, decompressing files, and killing

processes (Figure 8). The rules for this are defined in

Appendix B.

LYING: hacker(192.168.0.1) CONNECT SSH DEST:192.168.0.3 at Feb 21
15:16:33 2003.

 36

Figure 8. Process running at protected
machine

In Figure 8, we have some process running on the

server as httpd (PID 1923) and sshd (PID 1929). The

attacker will try to delete a file and copy a file from one

directory to another; after that the intruder will try to

kill some process.

• Snort: Not involved.

• LIDS: This blocked all of the attacks that the

attacker tried to invoke against the target machine.

The LIDS configuration needed to accomplish this and

allow ssh and the HTTP Server to keep running are

described in Appendix B. Following is the output of

the message log file logged by LIDS when the attacker

 37

tried to remove and copy a file (Figure 9) to the

protected system.
Feb 24 23:47:16 LIDS kernel: LIDS: rmdir (dev 3:2 inode 840392)
pid 2031 ppid 1995 uid/gid (0/0) on (pts) : Attempt to rmdir
apache_pb2.gif

Feb 24 23:48:00 LIDS kernel: LIDS: cp (dev 3:2 inode 840382) pid
2032 ppid 1995 uid/gid (0/0) on (pts) : Attempt to open
index.html for writing,flag=32834

After that, the attacker tried to kill the

process httpd. Figure 9 shows the moment that the

attacker attempted to check if there was a root

privilege; the attacker ultimately realized that the

commands, even with root privilege, would not work

since the process was still running.

Figure 9. Attacker deleting and copying
files

Next we show what happened when the attacker

attempted to terminate process 1929 that was protected

by the system (Figure 10).

 38

Figure 10. Attacker trying to kill httpd
process

Here is the output of message log file.
Feb 24 23:58:20 LIDS kernel: LIDS: bash (dev 3:2 inode 840369)
pid 1995 ppid 1994 uid/gid (0/0) on (pts) : violated CAP_KILL

Feb 24 23:58:38 LIDS kernel: LIDS: bash (dev 3:2 inode 840369)
pid 1995 ppid 1994 uid/gid (0/0) on (pts) : violated
CAP_KILL_PROTECTED - logging disabled for (60)s

Feb 24 23:58:38 LIDS kernel: LIDS: bash (dev 3:2 inode 840369)
pid 1995 ppid 1994 uid/gid (0/0) on (pts) : Attempt to kill

 39

pid 1995 ppid 1994 uid/gid (0/0) on (pts) : Attempt to kill
pid=1929 with sig=15

• Kernel Log File: Does not make any kind of

record, as the commands are not executed.

• Log Monitor: Read the alert file generated by

LIDS, searching for patterns that indicate a violation

of rules, such as attempting to remove file (/rmdir/),

to copy file (/cp/) and kill process

(/CAP_KILL_VIOLATION/). After matching the patterns,

the log monitor is recorded in decoy.log:
LYING: hacker(192.168.0.1) ATTEMPT to RMDIR at Feb 24 23:48:00
2003.
LYING: hacker(192.168.0.1) ATTEMPT to COPY a FILE at Feb 24
23:48:00
LYING: hacker(192.168.0.1) ATTEMPT to KILL PROCESS 1929 at Feb 24
23:58:38 2003.

 40

THIS PAGE INTENTIONALLY LEFT BLANK

 41

V. DISCUSSION

Military history suggests it is best to employ a

layered, defense-in-depth strategy that includes

protection, monitoring, and response [28]. Also, deception

should be integrated with operations [29]. This is the

strongest point of the architecture developed in the

experimental design, which has its structure based on

defense-in-depth. We showed that an intrusion-detection

system can improve decoy capabilities if the two are

integrated together . The detection system cannot be a job

of only one machine or technology. Both of these

capabilities have to be spread around the defensive

structure.

As we do not have, at the present date, a defined

decoy policy, we created one (Table 4) based on some

experience in the security and network field. With this

simple and real example, we demonstrated simple detection

and response capabilities. In our experiments, different

phases of a simulated attack (PING, SCAN, CONNECTION and

BAD ACTIONS), used different kinds of detection

technologies that can be associated with different kinds of

deception.

In particular, with this architecture and

implementation: a log monitor that reads and analyzes all

detection alarms and then launches deception capabilities,

we have a better coordination between an intrusion-

detection system and a software decoy. This integration

between defense modules and the log monitor is very

 42

important since we can launch different decoys for

different situations based on information about the whole

arena. This significantly improves the performance of

software decoy applications.

 43

VI. CONCLUSIONS

Some concepts of this work, such as defense-in-depth,

centralized coordination, surveillance, event registry, and

deception, have been widely used by military forces around

the world for thousands of years. In the "information age"

these tactics and strategies of military forces are

migrating to the digital world. This makes sense because

the digital world also encompasses; enemies, attacks,

networks to be defended, defense planning to be performed,

countermeasures to be executed, information warfare to be

deployed, technology to be developed, and deceptions to

fool the enemy.

Our experiments in this thesis demonstrated the

advantages of intrusion-detection software as a component

in defense of computer systems, much as any military

defense plan should be based on battlefield intelligence

information. But intrusion information can be voluminous

and needs to be collected and fused by a central "brain" as

we described in this research. In the proposed

architecture, network intrusion detection, host intrusion

detection and log files acted as our defense modules.

Their integration with a log monitor became vital for the

implementation of decoy capabilities.

This approach is not new and was first proposed in

1980 [30]. Since then a log analysis has been one of the

most overlooked aspects of operational computer security.

Many organizations spend hundreds of thousands of dollars

on intrusion-detection systems (IDS) deployments, but still

 44

ignore their firewall logs. Bird [31] suggests that the

next wave in security will be to usefully correlate and

process the contents of multiple logs and intrusion-

detection technology in real time.

A. POSSIBLE FUTURE WORK

More tests and experiments are necessary to best

address some issues not covered in this research:

• Synchronization of all modules with timestamps would

be useful as the timing of events is a very

important issue in this kind of approach.

• Encrypted communication between defense modules and

the coordination module could help conceal

deceptions.

• Redundancy of all data stored in the coordination

module could increase robustness.

• Defense modules could be created with a high level

of specialization. The rules and policy could be

customized for each environment and each defense

module.

• Integration of the intrusion-detection system with

other defense technology using the Intruder

Detection and Isolation Protocol (IDIP) could

provide additional resources to facilitate

implementation.

 45

VII. APPENDIXES

APPENDIX A – LOG MONITOR PROGRAM

#!/usr/bin/perl

####################################
Load Configuration
####################################
$decoy_file = "./decoy.log";
$ping_file = "/var/log/snort/alert";
$scan_file = "/var/log/snort/alert";
$connect_file = "/var/log/snort/alert";
$login_root_file = "/var/log/messagens";

open(PING, $ping_file) or die "can't open PING file: $ping_file: $!\n";
print "Checking $ping_file ...\n";
while(<PING>) {
 next unless /ICMP Packet | Portscan detected | TELNET attempt /;
 if ("$&" == "ICMP Packet") {
 my $status = "PING";
 if (/.* (\d+\.\d+\.\d+\.\d+) -> (\d+\.\d+\.\d+\.\d+)/) {
 &check_IP_Table($1, $2, $status);
 }#end if
 }#end if
 if ("$&" == "Portscan detected") {
 my $status = "SCAN";
 if (/.* (\d+\.\d+\.\d+\.\d+):\d+ -> (\d+\.\d+\.\d+\.\d+):\d+/) {
 &check_IP_Table($1, $2, $status);
 }
 }#end if
 if ("$&" == "TELNET attempt") {
 my $status = "CONNECT";
 if (/.* (\d+\.\d+\.\d+\.\d+):\d+ -> (\d+\.\d+\.\d+\.\d+)/) {
 &check_IP_Table($1, $2, $status);
 }#end if
 }#end if
}#end while

open (LOG, "/var/log/messages") or die "Can't open /var/log/messagens\n";
print "\nChecking $login_root_file..\n";
while (<LOG>) {
 next unless /session opened/;
 my $status = "LOGIN";
 #$total_good_su++;
 if (/session opened for user (\w) by/) {
 &check_IP_Table($1, undef, $status);
 }#end if
}#end while

#Area for Sub Rotines

sub write_decoy_file {
 my $message = $_[0];
 print STDOUT $message;
 open (DECOY, ">>$decoy_file");
 print DECOY $message;
 close (DECOY);

 46

}# end of write_decoy_file

sub check_IP_Table {
 my ($source, $dest, $status) = @_;
 $key_hash = "$source.$status";
 if ($hash{$key_hash}) {
 $hash{$key_hash}++;
 print "\tIP $source has $hash{$key_hash} attempts\n";
 }#end if
 else {
 print "\tNew Hacker Activity: IP number: $source,$status\n";
 &check_hacker($source, $dest, $status);
 }#end elsif
}#end check_IP_Table

sub check_hacker {
 my ($source, $dest, $status) = @_;
my $date = localtime();
 if ($status eq "PING") {
 &write_decoy_file("\t\tHONESTY: ");
 &write_decoy_file("hacker($source) $status DEST:$dest\n");
 }#end if
 if ($status eq "SCAN") {
 &write_decoy_file("\t\tLYING: ");
 &write_decoy_file("hacker($source) $status DESt:$dest\n");
 &write_decoy_file("\t\tRedirecting to FAKE SERVER...\n");
 }#end if
 if ($status eq "CONNECT") {
 &write_decoy_file("\t\tLYING: ");
 &write_decoy_file("$hacker($source) $status DEST:$dest\n");
 }#end if
 if ($status eq "LOGIN") {
 &write_decoy_file("\t\tLYING: ");
 &write_decoy_file("$hacker($source) $status DEST:$dest\n");
 }#end if
}#end check_hacker

 47

APPENDIX B – LIDS AND INSTALLATION

This appendix provides guidelines to implement LIDS in

the LINUX system. This guide is based on the documentation

available in the LIDS official home page [42], along with

some of our own updates.

Before installing LIDS in the machine, you must

download the "pure" kernel developed by Linux (or did you

mean Linus Torvalds?); LIDS is a patch of the kernel. Many

distributors, including Red Hat, customize their kernel.

Although this is not a problem, LIDS only runs over Linux

pure kernel. There are many documents and books about

Linux Kernel compilation [41].

1. System Environment

Operating System LINUX RedHat 8
Kernel 2.4.18
LIDS version lids-1.1.1r2-2.4.18
Unpacked LIDS directory /usr/src/lids-1.1.1r2-2.4.18
Configuration directory /etc/lids

Lids.conf LIDS ACL configuration file
Lids.cap LIDS capabilities file
Lids.pw LIDS password file

Configuration Files

Lids.net Lids mail alert configuration file

2. Installation

Before installing LIDS, the kernel must be patched.

To do this, download the LIDS patch [42] that matches the

specific kernel, which for this research, was lids-1.1.1r2-

2.4.18. After that follow the steps:
Step Commands Comments
01 cd /usr/src/linux This is the directory that you unpacked the original

Linux kernel.
02 patch –p1 <

/usr/src/lids-1.1.1r2-
2.4.18.patch

Patch the Linux kernel

 48

2.4.18.patch
03 make clean Recompile the Linux kernel
04 make xconfig Open Linux kernel menu. Make sure that the following

options are enabled:
[*] Prompt for development and/or incomplete
code/drives
[*] Sysctl support
In the LIDS option in the kernel, make sure that the
following options are enabled:
[*] Linux Intrusion-detection System support
[*] Attempt not to flood logs
[*] Allow switching LIDS protection
[*] Allow reloading config. File
[*] Port scanner detector in kernel
[*] Send security alerts through network

05 make dep clean bzImage Complete the kernel recompilation
06 lilo Do not forget to configure lilo for this new patched

kernel
07 cd /usr/src/lids-

1.1.1r2-2.4.18
Go to lids directory and install lidsadm an lidsconf
with ./configure && make && make install

08 cp /usr/src/lids-
1.1.1r2-
2.4.18/example/lids.*
/etc/lids

This will create the files in order to reboot the
machine. To the system work properly we have to
change this file according to our system
configuration and security police

09 lidsconf –P Generate the password file lids.pwd
10 reboot Reboot the machine
11 There are some important commands to deal with LIDS implementation and debug:
 lidsadm –S -- -

LIDS_GLOBAL
Disable LIDS completely

 lidsadm –S --
+LIDS_GLOBAL

Enable LIDS completely

 lidsadm –V This will produce output that show all LIDS options
12 In the official reference there are some old commands that use lidsadm

instead of lidsconf. Use the both commands lidsadm –help and lidsconf –help
to make sure about the right command.

3. LIDS Files Configurations

• Lids.cap file:
0: In a system with the _POSIX_CHOWN_RESTRICTED option defined, this overrides the
restriction
0: of changing file ownership and group ownership.

+0:CAP_CHOWN

1: Override all DAC access, including ACL execute access if _POSIX_ACL is defined.
Excluding
1: DAC access covered by CAP_LINUX_IMMUTABLE.

+1:CAP_DAC_OVERRIDE

2: Overrides all DAC restrictions regarding read and search on files and directories,
including
2: ACL restrictions if _POSIX_ACL is defined. Excluding DAC access covered by
2: CAP_LINUX_IMMUTABLE.

+2:CAP_DAC_READ_SEARCH

3: Overrides all restrictions about allowed operations on files, where file owner ID
must be equal

 49

must be equal
3: to the user ID, except where CAP_FSETID is applicable. It doesn't override MAC and
DAC
3: restrictions.

+3:CAP_FOWNER

4: Overrides the following restrictions that the effective user ID shall match the
file owner ID
4: when setting the S_ISUID and S_ISGID bits on that file; that the effective group
ID (or one of
4: the supplementary group IDs) shall match the file owner ID when setting the
S_ISGID bit on
4: that file; that the S_ISUID and S_ISGID bits are cleared on successful return from
chown(2)
4: (not implemented).

+4:CAP_FSETID

5: Overrides the restriction that the real or effective user ID of a process sending
a signal must
5: match the real or effective user ID of the process receiving the signal.

-5:CAP_KILL

6: - Allows setgid(2) manipulation
6: - Allows setgroups(2)
6: - Allows forged gids on socket credentials passing.

+6:CAP_SETGID

7: - Allows set*uid(2) manipulation (including fsuid).
7: - Allows forged pids on socket credentials passing.

+7:CAP_SETUID

8: Transfer any capability in your permitted set to any pid, remove any capability in
your
8: permitted set from any pid.

+8:CAP_SETPCAP

9: Allow modification of S_IMMUTABLE and S_APPEND file attributes.

-9:CAP_LINUX_IMMUTABLE

10: Allows binding to TCP/UDP sockets below 1024.

-10:CAP_NET_BIND_SERVICE

11: Allow broadcasting, listen to multicast.

+11:CAP_NET_BROADCAST

12: - Allow interface configuration
12: - Allow administration of IP firewall, masquerading and accounting
12: - Allow setting debug option on sockets
12: - Allow modification of routing tables
12: - Allow setting arbitrary process / process group ownership on sockets
12: - Allow binding to any address for transparent proxying
12: - Allow setting TOS (type of service)
12: - Allow setting promiscuous mode
12: - Allow clearing driver statistics
12: - Allow multicasting
12: - Allow read/write of device-specific registers

-12:CAP_NET_ADMIN

13: - Allow use of RAW sockets

 50

13: - Allow use of PACKET sockets

-13:CAP_NET_RAW

14: - Allow locking of shared memory segments
14: - Allow mlock and mlockall (which doesn't really have anything to do with IPC)

+14:CAP_IPC_LOCK

15: Override IPC ownership checks.

+15:CAP_IPC_OWNER

16: Insert and remove kernel modules.

-16:CAP_SYS_MODULE

17: - Allow ioperm/iopl and /dev/port access
17: - Allow /dev/mem and /dev/kmem acess
17: - Allow raw block devices (/dev/[sh]d??) acess

-17:CAP_SYS_RAWIO

18: Allow use of chroot()

+18:CAP_SYS_CHROOT

19: Allow ptrace() of any process

-19:CAP_SYS_PTRACE

20: Allow configuration of process accounting

+20:CAP_SYS_PACCT

21:

21: - Allow configuration of the secure attention key
21: - Allow administration of the random device
21: - Allow device administration (mknod)
21: - Allow examination and configuration of disk quotas
21: - Allow configuring the kernel's syslog (printk behaviour)
21: - Allow setting the domainname
21: - Allow setting the hostname
21: - Allow calling bdflush()
21: - Allow mount() and umount(), setting up new smb connection
21: - Allow some autofs root ioctls
21: - Allow nfsservctl
21: - Allow VM86_REQUEST_IRQ
21: - Allow to read/write pci config on alpha
21: - Allow irix_prctl on mips (setstacksize)
21: - Allow flushing all cache on m68k (sys_cacheflush)
21: - Allow removing semaphores
21: - Used instead of CAP_CHOWN to "chown" IPC message queues, semaphores and shared
memory
21: - Allow locking/unlocking of shared memory segment
21: - Allow turning swap on/off
21: - Allow forged pids on socket credentials passing
21: - Allow setting readahead and flushing buffers on block devices
21: - Allow setting geometry in floppy driver
21: - Allow turning DMA on/off in xd driver
21: - Allow administration of md devices (mostly the above, but some extra ioctls)
21: - Allow tuning the ide driver
21: - Allow access to the nvram device
21: - Allow administration of apm_bios, serial and bttv (TV) device
21: - Allow manufacturer commands in isdn CAPI support driver
21: - Allow reading non-standardized portions of pci configuration space
21: - Allow DDI debug ioctl on sbpcd driver
21: - Allow setting up serial ports

 51

21: - Allow sending raw qic-117 commands
21: - Allow enabling/disabling tagged queuing on SCSI controllers and sending
arbitrary SCSI commands
21: - Allow setting encryption key on loopback filesystem

-21:CAP_SYS_ADMIN

22: Allow use of reboot()

+22:CAP_SYS_BOOT

23: - Allow raising priority and setting priority on other (different UID) processes
23: - Allow use of FIFO and round-robin (realtime) scheduling on own processes and
setting
23: the scheduling algorithm used by another process.

+23:CAP_SYS_NICE

Override resource limits. Set resource limits.
24: - Override quota limits.
24: - Override reserved space on ext2 filesystem
24: NOTE: ext2 honors fsuid when checking for resource overrides, so you can
override
24: using fsuid too
24: - Override size restrictions on IPC message queues
24: - Allow more than 64hz interrupts from the real-time clock
24: - Override max number of consoles on console allocation
24: - Override max number of keymaps

+24:CAP_SYS_RESOURCE

25: - Allow manipulation of system clock
25: - Allow irix_stime on mips
25: - Allow setting the real-time clock

-25:CAP_SYS_TIME

26: - Allow configuration of tty devices
26: - Allow vhangup() of tty

+26:CAP_SYS_TTY_CONFIG

27: Allow the privileged aspects of mknod()

+27:CAP_MKNOD

28:Allow taking of leases on files */

+28:CAP_LEASE

29: Restricts viewable processes by a user.

+29:CAP_HIDDEN

30: Allow to kill protected processes

-30:CAP_KILL_PROTECTED

31: Protect process against signals

+31:CAP_PROTECTED

• Lids.conf file configuration

This file is auto generated by lidsconf
Please do not modify this file by hand

 52

0:0::1:0:791855:770:/sbin:0-0
0:0::1:0:840334:770:/bin:0-0
0:0::1:0:2:769:/boot:0-0
0:0::1:0:921136:770:/lib:0-0
0:0::1:0:323201:770:/usr:0-0
0:0::1:0:226241:770:/etc:0-0
0:0::0:0:745099:770:/etc/lids:0-0
0:0::3:0:743370:770:/var/log:0-0
0:0::7:0:745391:770:/var/log/wtmp:0-0
840445:770:/bin/login:7:0:743373:770:/var/log/lastlog:0-0
695028:770:/etc/rc.d/rc:16:-1:-1:30:CAP_KILL_PROTECTED:0-0
695028:770:/etc/rc.d/rc:16:-1:-1:12:CAP_NET_ADMIN:0-0
695028:770:/etc/rc.d/rc:16:-1:-1:21:CAP_SYS_ADMIN:0-0
840422:770:/etc/rc.d/init.d/halt:16:-1:-1:30:CAP_KILL_PROTECTED:0-0
840422:770:/etc/rc.d/init.d/halt:16:-1:-1:21:CAP_SYS_ADMIN:0-0
840422:770:/etc/rc.d/init.d/halt:16:-1:-1:17:CAP_SYS_RAWIO:0-0
840422:770:/etc/rc.d/init.d/halt:16:-1:-1:12:CAP_NET_ADMIN:0-0
0:0::1:0:290881:770:/root:0-0
387985:770:/usr/sbin/sshd:16:0:22-22:10:CAP_NET_BIND_SERVICE:0-0
387985:770:/usr/sbin/sshd:16:0:-1:31:CAP_PROTECTED:0-0
145448:770:/usr/X11R6/bin/XF86_SVGA:16:0:-1:17:CAP_SYS_RAWIO:0-0
340048:770:/usr/bin/ssh:16:0:0-1024:10:CAP_NET_BIND_SERVICE:0-0
0:0::1:0:791855:770:/sbin:0-0
0:0::1:0:840338:770:/usr/local:0-0
0:0::1:0:743375:770:/opt:0-0
0:0::1:0:921138:770:/usr/local/etc:0-0
0:0::0:0:227208:770:/etc/shadow:0-0
0:0::0:0:227644:770:/etc/lilo.conf:0-0
840445:770:/bin/login:1:0:227208:770:/etc/shadow:0-0
840414:770:/bin/su:1:0:227208:770:/etc/shadow:0-0
840414:770:/bin/su:16:0:-1:7:CAP_SETUID:0-0
840414:770:/bin/su:16:0:-1:6:CAP_SETGID:0-0
840369:770:/bin/bash:7:0:293155:770:/root/.bash_history:0-0
840445:770:/bin/login:7:0:745391:770:/var/log/wtmp:0-0
791916:770:/sbin/init:7:0:745391:770:/var/log/wtmp:0-0
791916:770:/sbin/init:7:0:743373:770:/var/log/lastlog:0-0
791915:770:/sbin/halt:7:0:743373:770:/var/log/lastlog:0-0
791915:770:/sbin/halt:7:0:745391:770:/var/log/wtmp:0-0
695030:770:/etc/rc.d/rc.sysinit:7:1:745391:770:/var/log/wtmp:0-0
695030:770:/etc/rc.d/rc.sysinit:7:1:743373:770:/var/log/lastlog:0-0
791945:770:/sbin/hwclock:7:0:226410:770:/etc/adjtime:0-0
791916:770:/sbin/init:16:0:-1:5:CAP_KILL:0-0
840422:770:/etc/rc.d/init.d/halt:16:1:-1:5:CAP_KILL:0-0
791863:770:/sbin/update:16:0:-1:21:CAP_SYS_ADMIN:0-0
0:0::0:0:599268:770:/var/www:0-0
0:0::0:0:339533:770:/usr/bin/consolehelper:0-0
0:0::0:0:226493:770:/etc/ssh/sshd_config:0-0
0:0::0:0:227197:770:/etc/ssh/ssh_host_key:0-0
0:0::0:0:227214:770:/etc/ssh/ssh_host_dsa_key:0-0
387985:770:/usr/sbin/sshd:1:0:226493:770:/etc/ssh/sshd_config:0-0
387985:770:/usr/sbin/sshd:1:0:227197:770:/etc/ssh/ssh_host_key:0-0
387985:770:/usr/sbin/sshd:1:0:227214:770:/etc/ssh/ssh_host_dsa_key:0-0
387985:770:/usr/sbin/sshd:7:0:745391:770:/var/log/wtmp:0-0
387985:770:/usr/sbin/sshd:7:0:743373:770:/var/log/lastlog:0-0
387985:770:/usr/sbin/sshd:16:0:-1:7:CAP_SETUID:0-0
387985:770:/usr/sbin/sshd:16:0:-1:6:CAP_SETGID:0-0
387985:770:/usr/sbin/sshd:16:0:-1:3:CAP_FOWNER:0-0
387985:770:/usr/sbin/sshd:16:0:-1:0:CAP_CHOWN:0-0
387985:770:/usr/sbin/sshd:16:0:-1:1:CAP_DAC_OVERRIDE:0-0
387985:770:/usr/sbin/sshd:16:0:22-22:10:CAP_NET_BIND_SERVICE:0-0
387985:770:/usr/sbin/sshd:16:0:-1:18:CAP_SYS_CHROOT:0-0
387985:770:/usr/sbin/sshd:1:0:227208:770:/etc/shadow:0-0
857457:770:/usr/local/bin/snort:16:0:-1:1:CAP_DAC_OVERRIDE:0-0
857457:770:/usr/local/bin/snort:16:0:-1:13:CAP_NET_RAW:0-0
857457:770:/usr/local/bin/snort:16:0:-1:29:CAP_HIDDEN:0-0
857457:770:/usr/local/bin/snort:16:0:-1:7:CAP_SETUID:0-0
857457:770:/usr/local/bin/snort:16:0:-1:6:CAP_SETGID:0-0
857457:770:/usr/local/bin/snort:7:0:81730:770:/var/log/snort:0-0

 53

• Lids.net file configuration

LIDS
Send Alert Message From Network
for lids 0.9.8
xie@gnuchina.org

MAIL_SWITCH = 1 | 0
1 , send alert function is on
0, send alert function is off

MAIL_SWITCH= 0

MAIL_RELAY=hex IP:port
IP11.1 of the machine that will be directly connected by LIDS
for relaying its mails. Port is usually 25, but who knows...
MAIL_RELAY=127.0.0.1:25

MAIL_SOURCE=source machine :
Name of the source machine, used for the ehlo identification.
Note that a bad name here could make the mail relay refuse your
mails.
MAIL_SOURCE=decoy.cs.nps.navy.mil

MAIL_FROM=sender address
Sender address, which will also be in the ``from'' field.
MAIL_FROM= LIDS_ALERT@nps.navy.mil

MAIL_TO=recipient address :
Recipient address.
MAIL_TO= vjmontei@nps.navy.mil

MAIL_SUBJECT= subject :
Subject of the mail.
MAIL_SUBJECT= LIDS ALert

• Lids.pw password file
8fee5733a4caef5b1992e25508e0428740f99be7

 54

THIS PAGE INTENTIONALLY LEFT BLANK

 55

APPENDIX C – SNORT FILE CONFIGURATION

Modified by Valter Monteiro - Thesis Research
#--
http://www.snort.org Snort 1.9.0 Ruleset
Contact: snort-sigs@lists.sourceforge.net
#--
NOTE:This ruleset only works for 1.9.0 and later
#--
$Id: snort.conf,v 1.110 2002/08/14 03:17:58 chrisgreen Exp $

This file contains a sample snort configuration.
You can take the following steps to create your
own custom configuration:

1) Set the network variables for your network
2) Configure preprocessors
3) Configure output plugins
4) Customize your rule set

Step #1: Set the network variables:

You must change the following variables to reflect
your local network. The variable is currently
setup for an RFC 1918 address space.

You can specify it explicitly as:

var HOME_NET 192.160.0.0/24

or use global variable $<interfacename>_ADDRESS
which will be always initialized to IP address and
netmask of the network interface which you run
snort at.

var HOME_NET $eth0_ADDRESS

You can specify lists of IP addresses for HOME_NET
by separating the IPs with commas like this:

var HOME_NET [10.1.1.0/24,192.168.1.0/24]

MAKE SURE YOU DON'T PLACE ANY SPACES IN YOUR LIST!

or you can specify the variable to be any IP address
like this:

var HOME_NET 192.168.0.3/24

Set up the external network addresses as well.
A good start may be "any"

var EXTERNAL_NET any

Configure your server lists. This allows snort to only look for attacks
to systems that have a service up. Why look for HTTP attacks if you are
not running a web server? This allows quick filtering based on IP addresses
These configurations MUST follow the same configuration scheme as defined
above for $HOME_NET.

List of DNS servers on your network
var DNS_SERVERS $HOME_NET

 56

List of SMTP servers on your network
var SMTP_SERVERS $HOME_NET

List of web servers on your network
var HTTP_SERVERS $HOME_NET

List of sql servers on your network
var SQL_SERVERS $HOME_NET

List of telnet servers on your network
var TELNET_SERVERS $HOME_NET

Configure your service ports. This allows snort to look for attacks
destined to a specific application only on the ports that application
runs on. For example, if you run a web server on port 8081, set your
HTTP_PORTS variable like this:

var HTTP_PORTS 8081

Port lists must either be continuous [eg 80:8080], or a single port [eg 80].
We will adding support for a real list of ports in the future.

Ports you run web servers on
var HTTP_PORTS 80

Ports you want to look for SHELLCODE on.
var SHELLCODE_PORTS !80

Ports you do oracle attacks on
var ORACLE_PORTS 1521

other variables

AIM servers. AOL has a habit of adding new AIM servers, so instead of
modifying the signatures when they do, we add them to this list of
servers.
var AIM_SERVERS
[64.12.24.0/24,64.12.25.0/24,64.12.26.14/24,64.12.28.0/24,64.12.29.0/24,64.12.161.0/24,64.12.163.0/24,205.188.5.0/24,205.188.9.0/24]

Path to your rules files (this can be a relative path)
var RULE_PATH ../rules

Step #2: Configure preprocessors

General configuration for preprocessors is of
the form
preprocessor <name_of_processor>: <configuration_options>

frag2: IP defragmentation support

This preprocessor performs IP defragmentation. This plugin will also detect
people launching fragmentation attacks (usually DoS) against hosts. No
arguments loads the default configuration of the preprocessor, which is a
60 second timeout and a 4MB fragment buffer.

The following (comma delimited) options are available for frag2
timeout [seconds] - sets the number of [seconds] than an unfinished
fragment will be kept around waiting for completion,
if this time expires the fragment will be flushed
memcap [bytes] - limit frag2 memory usage to [number] bytes
(default: 4194304)

min_ttl [number] - minimum ttl to accept

ttl_limit [number] - difference of ttl to accept without alerting
will cause false positves with router flap

 57

Frag2 uses Generator ID 113 and uses the following SIDS
for that GID:
SID Event description
----- -------------------
1 Oversized fragment (reassembled frag > 64k bytes)
2 Teardrop-type attack

preprocessor frag2

stream4: stateful inspection/stream reassembly for Snort
#--
Use in concert with the -z [all|est] command line switch to defeat
stick/snot against TCP rules. Also performs full TCP stream
reassembly, stateful inspection of TCP streams, etc. Can statefully
detect various portscan types, fingerprinting, ECN, etc.

stateful inspection directive
no arguments loads the defaults (timeout 30, memcap 8388608)
options (options are comma delimited):
detect_scans - stream4 will detect stealth portscans and generate alerts
when it sees them when this option is set
detect_state_problems - detect TCP state problems, this tends to be very
noisy because there are a lot of crappy ip stack
implementations out there

disable_evasion_alerts - turn off the possibly noisy mitigation of
overlapping sequences.

min_ttl [number] - set a minium ttl that snort will accept to
stream reassembly

ttl_limit [number] - differential of the initial ttl on a session versus
the normal that someone may be playing games.
Routing flap may cause lots of false positives.

keepstats [machine|binary] - keep session statistics, add "machine" to
get them in a flat format for machine reading, add
"binary" to get them in a unified binary output
format
noinspect - turn off stateful inspection only
timeout [number] - set the session timeout counter to [number] seconds,
default is 30 seconds
memcap [number] - limit stream4 memory usage to [number] bytes
log_flushed_streams - if an event is detected on a stream this option will
cause all packets that are stored in the stream4
packet buffers to be flushed to disk. This only
works when logging in pcap mode!

Stream4 uses Generator ID 111 and uses the following SIDS
for that GID:
SID Event description
----- -------------------
1 Stealth activity
2 Evasive RST packet
3 Evasive TCP packet retransmission
4 TCP Window violation
5 Data on SYN packet
6 Stealth scan: full XMAS
7 Stealth scan: SYN-ACK-PSH-URG
8 Stealth scan: FIN scan
9 Stealth scan: NULL scan
10 Stealth scan: NMAP XMAS scan
11 Stealth scan: Vecna scan
12 Stealth scan: NMAP fingerprint scan stateful detect
13 Stealth scan: SYN-FIN scan
14 TCP forward overlap

preprocessor stream4: detect_scans, disable_evasion_alerts

 58

tcp stream reassembly directive
no arguments loads the default configuration
Only reassemble the client,
Only reassemble the default list of ports (See below),
Give alerts for "bad" streams

Available options (comma delimited):
clientonly - reassemble traffic for the client side of a connection only
serveronly - reassemble traffic for the server side of a connection only
both - reassemble both sides of a session
noalerts - turn off alerts from the stream reassembly stage of stream4
ports [list] - use the space separated list of ports in [list], "all"
will turn on reassembly for all ports, "default" will turn
on reassembly for ports 21, 23, 25, 53, 80, 143, 110, 111
and 513

preprocessor stream4_reassemble

http_decode: normalize HTTP requests

http_decode normalizes HTTP requests from remote
machines by converting any %XX character
substitutions to their ASCII equivalent. This is
very useful for doing things like defeating hostile
attackers trying to stealth themselves from IDSs by
mixing these substitutions in with the request.
Specify the port numbers you want it to analyze as arguments.

Major code cleanups thanks to rfp

unicode - normalize unicode
iis_alt_unicode - %u encoding from iis
double_encode - alert on possible double encodings
iis_flip_slash - normalize \ as /
full_whitespace - treat \t as whitespace (for apache)

for that GID:
SID Event description
----- -------------------
1 UNICODE attack
2 NULL byte attack

preprocessor http_decode: 80 unicode iis_alt_unicode double_encode iis_flip_slash full_whitespace

rpc_decode: normalize RPC traffic

RPC may be sent in alternate encodings besides the usual
4-byte encoding that is used by default. This preprocessor
normalized RPC traffic in much the same way as the http_decode
preprocessor. This plugin takes the ports numbers that RPC
services are running on as arguments.
The RPC decode preprocessor uses generator ID 106 and does not
generate any SIDs at this time.

preprocessor rpc_decode: 111 32771

bo: Back Orifice detector

Detects Back Orifice traffic on the network. This preprocessor
uses the Back Orifice "encryption" algorithm to search for
traffic conforming to the Back Orifice protocol (not BO2K).
This preprocessor can take two arguments. The first is "-nobrute"
which turns off the plugin's brute forcing routine (brute forces
the key space of the protocol to find BO traffic). The second
argument that can be passed to the routine is a number to use
as the default key when trying to decrypt the traffic. The
default value is 31337 (just like BO). Be aware that turning on
the brute forcing option runs the risk of impacting the overall

 59

performance of Snort, you've been warned...

The Back Orifice detector uses Generator ID 105 and uses the
following SIDS for that GID:
SID Event description
----- -------------------
1 Back Orifice traffic detected

preprocessor bo: -nobrute

telnet_decode: Telnet negotiation string normalizer

This preprocessor "normalizes" telnet negotiation strings from
telnet and ftp traffic. It works in much the same way as the
http_decode preprocessor, searching for traffic that breaks up
the normal data stream of a protocol and replacing it with
a normalized representation of that traffic so that the "content"
pattern matching keyword can work without requiring modifications.
This preprocessor requires no arguments.
Portscan uses Generator ID 109 and does not generate any SID currently.

preprocessor telnet_decode

Portscan: detect a variety of portscans

portscan preprocessor by Patrick Mullen <p_mullen@linuxrc.net>
This preprocessor detects UDP packets or TCP SYN packets going to
four different ports in less than three seconds. "Stealth" TCP
packets are always detected, regardless of these settings.
Portscan uses Generator ID 100 and uses the following SIDS for that GID:
SID Event description
----- -------------------
1 Portscan detect
2 Inter-scan info
3 Portscan End

preprocessor portscan: $HOME_NET 4 3 portscan.log

Use portscan-ignorehosts to ignore TCP SYN and UDP "scans" from
specific networks or hosts to reduce false alerts. It is typical
to see many false alerts from DNS servers so you may want to
add your DNS servers here. You can all multiple hosts/networks
in a whitespace-delimited list.

#preprocessor portscan-ignorehosts: 0.0.0.0

arpspoof
#--
Experimental ARP detection code from Jeff Nathan, detects ARP attacks,
unicast ARP requests, and specific ARP mapping monitoring. To make use
of this preprocessor you must specify the IP and hardware address of hosts on # the same layer 2 segment as you.
IP MAC combo per line.
Also takes a "-unicast" option to turn on unicast ARP request detection.
Arpspoof uses Generator ID 112 and uses the following SIDS for that GID:
SID Event description
----- -------------------
1 Unicast ARP request
2 Etherframe ARP mismatch (src)
3 Etherframe ARP mismatch (dst)
4 ARP cache overwrite attack

#preprocessor arpspoof
#preprocessor arpspoof_detect_host: 192.168.40.1 f0:0f:00:f0:0f:00

ASN1 Decode
#---
This is an experimental preprocessor. ASN.1 decoder and analysis plugin
from Andrew R. Baker. This preprocessor will detect abuses of the ASN.1
protocol that higher level protocols (like SSL, SNMP, x.509, etc) rely on.

 60

The ASN.1 decoder uses Generator ID 115 and uses the following SIDs for
that GID:
SID Event description
----- -------------------
1 Indefinite length
2 Invalid length
3 Oversized item
4 ASN.1 specification violation
5 Dataum bad length

preprocessor asn1_decode

Fnord
#---
This is an experimental preprocessor. Polymorphic shellcode analyzer and
detector by Dragos Ruiu. This preprocessor will watch traffic for
polymorphic NOP-type sleds to defeat tools like ADMutate. The Fnord detector
uses Generator ID 114 and the following SIDs:
SID Event description
----- -------------------
1 NOP-sled detected

preprocessor fnord

Conversation
#--
This preprocessor tracks conversations for tcp, udp and icmp traffic. It
is a prerequisite for running portscan2.

allowed_ip_protcols 1 6 17
list of allowed ip protcols (defaults to any)

timeout [num]
conversation timeout (defaults to 60)

max_conversations [num]
number of conversations to support at once (defaults to 65335)

alert_odd_protocols
alert on protocols not listed in allowed_ip_protocols

preprocessor conversation: allowed_ip_protocols all, timeout 60, max_conversations 32000

Portscan2
#---
Portscan 2, detect portscans in a new and exciting way.

Available options:
scanners_max [num]
targets_max [num]
target_limit [num]
port_limit [num]
timeout [num]
log [logdir]

preprocessor portscan2: scanners_max 3200, targets_max 5000, target_limit 5, port_limit 20, timeout 60

Experimental Perf stats

No docs. Highly subject to change.

preprocessor perfmonitor: console flow events time 10

Step #3: Configure output plugins

Uncomment and configure the output plugins you decide to use.

 61

General configuration for output plugins is of the form:

output <name_of_plugin>: <configuration_options>

alert_syslog: log alerts to syslog

Use one or more syslog facilities as arguments

output alert_syslog: LOG_AUTH LOG_ALERT

log_tcpdump: log packets in binary tcpdump format

The only argument is the output file name.

output log_tcpdump: tcpdump.log

database: log to a variety of databases

See the README.database file for more information about configuring
and using this plugin.

output database: log, mysql, user=root password=test dbname=db host=localhost
output database: alert, postgresql, user=snort dbname=snort
output database: log, unixodbc, user=snort dbname=snort
output database: log, mssql, dbname=snort user=snort password=test

xml: xml logging

See the README.xml file for more information about configuring
and using this plugin.

output xml: log, file=/var/log/snortxml

unified: Snort unified binary format alerting and logging

The unified output plugin provides two new formats for logging
and generating alerts from Snort, the "unified" format. The
unified format is a straight binary format for logging data
out of Snort that is designed to be fast and efficient. Used
with barnyard (the new alert/log processor), most of the overhead
for logging and alerting to various slow storage mechanisms
such as databases or the network can now be avoided.

Check out the spo_unified.h file for the data formats.

Two arguments are supported.
filename - base filename to write to (current time_t is appended)
limit - maximum size of spool file in MB (default: 128)

output alert_unified: filename snort.alert, limit 128
output log_unified: filename snort.log, limit 128

trap_snmp: SNMP alerting for Snort

Read the README.SNMP file for more information on enabling and using this
plug-in.

#The trap_snmp plugin accepts the following notification options
[c],[p[m|s]]
where,
c : Generate compact notifications. (Saves on bandwidth by
not reporting MOs for which values are unknown, not
available or, not applicable). By default this option is reset.
p : Generate a print of the invariant part of the offending packet.
This can be used to track the packet across the Internet.
By default this option is reset.
m : Use the MD5 algorithm to generate the packet print.

 62

By default this algorithm is used.
s : Use the SHA1 algorithm to generate the packet print.

The trap_snmp plugin requires several parameters
The parameters depend on the Snmpversion that is used (specified)
For the SNMPv2c case the parameters will be as follows
alert, <sensorID>, [NotificationOptions] ,
{trap|inform} -v <SnmpVersion> -p <portNumber> <hostName> <community>

For SNMPv2c traps with MD5 digest based packetPrint generation

output trap_snmp: alert, 7, cpm, trap -v 2c myTrapListener myCommunity

For SNMPv2c informs with the 'compact' notification option

#output trap_snmp: alert, 7, c, inform -v 2c myTrapListener myCommunity

For SNMPv3 traps with
security name = snortUser
security level = authentication and privacy
authentication parameters :
authentication protocol = SHA ,
authentication pass phrase = SnortAuthPassword
privacy (encryption) parameters
privacy protocol = DES,
privacy pass phrase = SnortPrivPassword

#output trap_snmp: alert, 7, trap -v 3 -u snortUser -l authPriv -a SHA -A SnortAuthPassword -x DES
myTrapListener
#For SNMPv3 informs with authentication and encryption
#output trap_snmp: alert, 7, inform -v 3 -u snortUser -l authPriv -a SHA -A SnortAuthPassword -x DES
myTrapListener

You can optionally define new rule types and associate one or
more output plugins specifically to that type.

This example will create a type that will log to just tcpdump.
ruletype suspicious
{
type log
output log_tcpdump: suspicious.log
}

EXAMPLE RULE FOR SUSPICIOUS RULETYPE:
suspicious $HOME_NET any -> $HOME_NET 6667 (msg:"Internal IRC Server";)

This example will create a rule type that will log to syslog
and a mysql database.
ruletype redalert
{
type alert
output alert_syslog: LOG_AUTH LOG_ALERT
output database: log, mysql, user=snort dbname=snort host=localhost
}

EXAMPLE RULE FOR REDALERT RULETYPE
redalert $HOME_NET any -> $EXTERNAL_NET 31337 (msg:"Someone is being LEET"; \
flags:A+;)

Include classification & priority settings

include classification.config

Include reference systems

 63

include reference.config

Step #4: Customize your rule set

Up to date snort rules are available at http://www.snort.org

The snort web site has documentation about how to write your own
custom snort rules.

The rules included with this distribution generate alerts based on
on suspicious activity. Depending on your network environment, your
security policies, and what you consider to be suspicious, some of
these rules may either generate false positives ore may be detecting
activity you consider to be acceptable; therefore, you are
encouraged to comment out rules that are not applicable in your
environment.

Note that using all of the rules at the same time may lead to
serious packet loss on slower machines. YMMV, use with caution,
standard disclaimers apply. :)

The following individuals contributed many of rules in this
distribution.

Credits:
Ron Gula <rgula@securitywizards.com> of Network Security Wizards
Max Vision <vision@whitehats.com>
Martin Markgraf <martin@mail.du.gtn.com>
Fyodor Yarochkin <fygrave@tigerteam.net>
Nick Rogness <nick@rapidnet.com>
Jim Forster <jforster@rapidnet.com>
Scott McIntyre <scott@whoi.edu>
Tom Vandepoel <Tom.Vandepoel@ubizen.com>
Brian Caswell <bmc@snort.org>
Zeno <admin@cgisecurity.com>
Ryan Russell <ryan@securityfocus.com>

#===
Include all relevant rulesets here

shellcode, policy, info, backdoor, and virus rulesets are
disabled by default. These require tuning and maintance.
Please read the included specific file for more information.
#===

#include $RULE_PATH/bad-traffic.rules
#include $RULE_PATH/exploit.rules
#include $RULE_PATH/scan.rules
#include $RULE_PATH/finger.rules
#include $RULE_PATH/ftp.rules
include $RULE_PATH/telnet.rules
#include $RULE_PATH/rpc.rules
#include $RULE_PATH/rservices.rules
#include $RULE_PATH/dos.rules
#include $RULE_PATH/ddos.rules
#include $RULE_PATH/dns.rules
#include $RULE_PATH/tftp.rules

#include $RULE_PATH/web-cgi.rules
#include $RULE_PATH/web-coldfusion.rules
#include $RULE_PATH/web-iis.rules
#include $RULE_PATH/web-frontpage.rules
#include $RULE_PATH/web-misc.rules
#include $RULE_PATH/web-client.rules
#include $RULE_PATH/web-php.rules

#include $RULE_PATH/sql.rules

 64

#include $RULE_PATH/x11.rules
#include $RULE_PATH/icmp.rules
#include $RULE_PATH/netbios.rules
#include $RULE_PATH/misc.rules
#include $RULE_PATH/attack-responses.rules
#include $RULE_PATH/oracle.rules
#include $RULE_PATH/mysql.rules
#include $RULE_PATH/snmp.rules

#include $RULE_PATH/smtp.rules
#include $RULE_PATH/imap.rules
#include $RULE_PATH/pop3.rules

#include $RULE_PATH/nntp.rules
#include $RULE_PATH/other-ids.rules
#include $RULE_PATH/web-attacks.rules
#include $RULE_PATH/backdoor.rules
#include $RULE_PATH/shellcode.rules
#include $RULE_PATH/policy.rules
#include $RULE_PATH/porn.rules
#include $RULE_PATH/info.rules
#include $RULE_PATH/icmp-info.rules
include $RULE_PATH/icmp.rules
#include $RULE_PATH/virus.rules
#include $RULE_PATH/chat.rules
#include $RULE_PATH/multimedia.rules
#include $RULE_PATH/p2p.rules
#include $RULE_PATH/experimental.rules
#include $RULE_PATH/local.rules

 65

LIST OF REFERENCES

[1] Michael,J.B., and Riehle,R.D., Intelligent Software
Decoys. Proc. Monterey Workshop: Eng. Automation for
Software Intensive Syst. Integration, Monterey,
California: Naval Postgraduate School, June 2001,
pp.178-187

[2] Sun Tzu, The Art of War, Oxford University Press,
January 1986

[3] Dunnigan, J.F., and Nofi, A.A, Victory and Deceit,
second edition: Deception and Trickery in War. San
Jose, California: Writers Club Press, 2001

[4] Cohen,F., A Framework for Deception, July, 1993.

[5] Rowe, Neil C., Counterplanning Deceptions to Foil
Cyber-Attack Plans, Proceedings of the 2003 IEEE,
workshop on Information Assurance, United State
Military Academy, West Point, New York June 2003

[6] Neil C. Rowe, J.Bret Michael, Mikhail Auguston, and
Richard Riehle, Software decoys for Software
Counterintelligence, June 2002

[7] Honeynet Project, Know Your Enemy. Addison-Wesley,
2002

[8] Winn Schwartau, Time Based Security, Interpact Press,
February 1999

[9] Collection of papers, NPS Web Page – Software Decoy
Project

[10] The Official Red Hat Linux Customization Guide, Red
Hat 8.0, 2002

[11] Thomas A. Wadlow, The Process of Network Security.
Addison-Wesley, 2000

[12] Breatt Glass, Log Monitor in BSD UNIX, Laramie,
presented at BSDCon 2002, San Francisco.

[13] Lutz Prechelt, An empirical comparison of C, C++,
Java, perl, Python, Rexx, and Tcl, Faukultat fur

 66

Java, perl, Python, Rexx, and Tcl, Faukultat fur
Informatik, University Karlsruhe

[14] Diego Zamboni, Using Internal Sensor for Computer
Intrusion Detection, PhD Thesis, Center for Education
and Research in Information Assurance and Security,
Purdue University, August 2001

[15] Proctor, Paul E., The Practical Intrusion Detection
Handbook, Prentice-Hall, 2001

[16] The Intrusion Detection Systems Consortium (IDSC), An
Introduction to Intrusion Detection Assessment, March
1999

[17] Mark Crosbie and Gene Spafford. Active defense of a
computer system

using autonomous agents. Technical Report 95-008,
COAST Group, Department

of Computer Sciences, Purdue University, West
Lafayette, Indiana,

February 1995.

[18] Build a Secure System with LIDS. URL
http://www.lids.org, March 2003

[19] Anderson, J.P., Computer Security Technology Planning
Study, ESD-TR-73-51, Vol1, Hanscom AFB, Massachusetts,
1972

[20] Donald L. Brinkley and Roger R. Schell, Concepts and
terminology for computer Security, May 1993

[21] Georgios Fragkos, Master’s Thesis , An Event-Trace
Language for Software Decoys, September 2002, Naval
Postgraduate School

[22] Ko, C.,Fraser, T., Badger, L., Kilpatrick, D.,
Detecting and Countering System Intrusions Using
Software Wrappers, In Proc. 9th USENIX Security
Sysposium, Denver, Colorado, August 2000.

[23] Northcutt S., Novak J., Network Intrusion Detection,
Third Edition, New Riders, 2003

 67

[24] SANS Institute, Intrusion Detection Snort Style
Booklet, 2002.

[25] Martin Roesh, Snort Official Manual, release 1.9,
April 2002. URL http://www.snort.org

[26] Krzysztof Zaraska, IDS Active Response Mechanisms:
Countermeasure Subsystem for Prelude IDS, July 2002.

[27] Jason Larsen, Jed Halie, Understanding IDS Activate
Response Mechanisms, securityfocus, January 29, 2002.
URL http://www.securityfocus.com/infocus/1540, March
2003

[28] Gasfinkel, S. and Spafford, G., Practical Unix and
Internet Security, O'Reilly & Associates, Inc, 1996.

[29] Fowler, C.A., and Nesbit, R.F., Tactical deception in
air-land warfare. Journal of Electronic Defense, Vol
18, No. 6 (June 1995), pp. 37-44 & 76-79

[30] James P Anderson, Computer Security Threat Monitoring
and Surveillance, James P. Anderson Co., Fort
Washington. PA, April 1980. URL
http://csrc.nist.gov/publications/history/ande80.pdf,
March 2003

[31] PhD Tina Bird, Marcus J. Ranum, URL
http://www.loganalysis.org, March 2003

[32] Valter Monteiro, Neil C. Rowe, Independent Study,
Naval Postgraduate School, Monterey, California,
December, 2002

 68

THIS PAGE INTENTIONALLY LEFT BLANK

 69

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, VA

2. Dudley Knox Library
Naval Postgraduate School
Monterey, CA

3. Neil C. Rowe
Naval Postgraduate School

 Monterey, CA

4. J.D. Fulp
Naval Postgraduate School
Monterey, CA

